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INTRODUCTION

The major objective of this article is to examine eigenvalue equations
expressed in terms of dimensionless variables. OQur application is to
underwater acoustic ducts for which the square of the index of
refraction is piecewise linear. For %his cas$ the eigenvalue equation
involives the Airy functions Ai, Bi, Ai, and Bi for various arguments.

We consider two related approaches to the eigenvalue problem. The
first approach is the usual one, while the second approach is that of
this article. The first approach is to determine the eigenvalues,
i.e., the mode phase velocity, as a function of freguency and the
profile parameters. Given a sound speed profile,one iterates the
etigenvalue equation to determine the mode phase velocity as a function
of frequency. This approach is useful when treating profiles with a
large number of layers.

The second approach is to express the eigenvalue equation in terms of
dimensionless variables. These variables are the various arguments of
the Airy functions and various ratios of sound speed gradients. The
eigenvalue solution consists of a set of these dimensionless variables,
callied an eigenvalue set, that satisfy the eigenvalue equation. The
frequency and phase velocity are then obtained from expressions which
involve the eigenvalue set of dimensionless variables and the profile
parameters. The solutions are valid for any sound speed profile that
falls within the layer configurations for which the eigenvalue equation
is formulated.

We note that the two approaches use exactly the same eigenvalue
equation. 1In the first approach we select the problem variables
(orofile parameters, freguency, phase velocity) and convert them to
dimensionless mathematical variables which are then used in the

iterative solution of the eigenvalue equation. The second approach




reverses these steps. We first determine the iterative solution of the
eigenvalue equation for the mathematical variables. These mathematical
variables are then associated with the physical variables for the
particular profile of interest.

As we shall demonstrate, the second approach is advantageous in the
treatment of relatively simple duct configurations that involve only a
few mathematical variables. Examples are given that illustrate cases
of from one to five variables.

The second approach is not new. For example it is used in Ref. 1, which
is based on much earlier work by investigators in electromagnetic propa-
gation. Reference 1 treats a bi-linear surface duct for which there

are three dimensionless variables, designated as Hxn, M and p.

Qur renewed interest in the second approach stems from the studies of
Refs. 2 and 3. 1In Ref. 2 a double duct with nearly coincident
eigenvalues was constructed and investigated. The construction was
based on the normal mode solutions for a positive-gradient surface duct
and for a symmetric refractive duct. For these simple ducts there is
only one dimensionless variable in the appropriate eigenvalue equation
and it was demonstrated that here the phase velocity could be
explicitly represented as a function of the frequency, profile
parameters, and the roots of A1 and A}. Furthermore it was shown that
for these simple ducts the phase integral results of ray theory could
be brought into congruence with mode theory by the use of non-integral
values of mode number.

This result was carried forward in Ref. 3, which recommends a procedure
for testing various ray theories by a comparison of phase-integral
results with the exact solutions of normal-mode theory. This procedure
pr~nosed the use of non-integral values of mode number such that the
the ray- and mode-theory results agree in the high frequency limit.




Section I presents general expressions for the eigenvalue formuiation.
Section I1 deals with the unbounded asymmetric refractive duct for
which there are two dimensionless variables. An expression for
non-integral mode number, which brings ray and mode theory into
congruence, is developed. Section III treats an asymmetric refractive
duct with a surface boundary. For this case there are three
dimensionless variables. Section IV deals with a surface duct
overlaying a refractive duct. For this general case there are five
dimensionliess variables. However for the profile configuration of Ref.
2, this reduces to three dimensionless variables, Section V outlines
areas for further investigation. A summary is provided in Section VI.

I. GENERAL EXPRESSIONS

This section introduces the general expressions which are necessary or
useful for the analysis of eigenvalues.

The sound speed in each layer of the profile is expressed as
(¢ /c(z)]2 =1 - 2v,(z - / (1
i v4(2 = 23)/¢y, )

where Civ 240 and Y, are the sound speed, depth, and sound-

speed gradient, respectively, at the top of layer i. This article will
only treat the case of continuous sound speeds at layer interfaces,
i.e., the sound speed at the top of layer i1 and at the bottom of layer
-1 is the same with a value of ci. The case of discontinuous sound
speeds is tractable but leads to additional complications.

For this profile the unnormalized depth function for mode n and layer i
may be written as

Fog(2) = A oAb (¢ ) + 8 . BY (=€ ). (2)




Here Ani and Bni are coefficients which are 1ndepeqdent of Z, Ai
and Bi are the Airy functions, and Cni is given by

3 2 2 2l 2
Cnil2) = |ay (2 - z4) + w /¢4 - Ny [/a4. (3)
In Eq. (3)
3 2 3
a3 = -2vqw /C4. (4)

The quantity xn is known by several names i.e., the mode wave

number, the mode eigenvalue, and the separation constant. The boundary
conditions and the interface matching conditions form a system of
homogenous linear equations in the coefficients Ani and Bni' The
number of equations is equal to the number of Ani plus the number of
Bni' This system of equations has a non-trivial solution (non-zero)

if and only if the determinant of the coefficient matrix of the An
and Bn1 is zero. This determinant set to zero is the eigenvalue
equation. The kn are the values of mode wave number for which the
determinant is zero.

i

At layer interface i1 the pressure and its depth derivative must be
continuous. These matching conditions require Airy function evaluation
at the upper interface of layer i and the lower interface of layer

i-1. Thus at the upper interface of layer i the Airy functions must be

evaluated at —x1 5 where

2 2 2
Xj § = (W2/Ci - \p)/aj. : (5)




Equation (5) follows immediately from Eq. (3) with z = zi. We note
that £q. (3) may be evaluated in terms of ¢ rather than z. From Eqs.
(1) and (3) it follow. that

2.2
Cni = (w2/c2 - np)/ay. (6)

This expression yields not only Eq. (5) but also the lower interface

evaluation of layer i-1 at -x where

i,i-1

- 2 2 2 2
X, i-1 = (we/cy - Mg)/a4y. (7
At layer interface i the continuity of pressure leads to

An,i—] Ai(—xj,i_]) + Bn,1_1 Bi(-x5,1-1)

- Apj Ai(—X1‘1) ~ Bpj 81(-x1'1) = Q, (8)

The continuity of depth derivative leads to

1 )
An,1-1 8521 AT(=X4 4-1) + Bp i1 34 BI(-x4 4q)
1 1
- Ayg 35 A(exy ) - B Ay BI(x, ) = 0. (9)

We now examine various boundary conditions. Consider first cases where
the layer is an unbounded half space. When layer i is an unbounded
half space with positive sound-speed gradient, the solution is

Fni(Z) = An‘i A (—Cn1) (10)

{.e., the coefficient Bniis zero. Similarly when layer 1 is an
unbounded half space with negative sound-speed gradient, the soglution is

FM(Z) = An'i Ai (—Cm). (1)




In this latter case Eq. (4) cannot be used directly as ai is evaluated
in terms of the slope and sound speed at the upper interface. However,
we can also evaluate a_i in terms of the slope and sound speed at the
lower interface. From Eq. (1) we determine that

3 3
dc/dz = ¢ Yi/ci' (12)

Thus if Yio is the slope at the bottom of layer i,

3. 13
Yio = G441 Y% (13)
Hence
3 2 3
a = -2 Yio © /CZ“_._.I (14)

evaluates ai in terms of the slope and sound speed at the lower
interface.

Consider next the case where interface 1 is the ocean surface. The
condition for this interface is

F .(2) = An_i Ai(-x

n + Bn] Bi(-x

= 0. (15)

1,1) 1,1)

Equations (8) to (11) and (15) will allow us to express the eigenvalue
equation for the duct confiqurations of interest.

We have found theat the mode phase velocity is somewhat easier to
interpret and to analyze than the mode wave number. The mode phase

velocity is given by

o = w/R1 . (16)
pn n

6




The modes are always ordered by increasing phase velocity i.e., mode 1
has the lowest phase velocity, mode 2 the next lowest etc. Equation
(5) may be expressed in terms of mode phase velocity as

2 1/72.2/3 -2/3

Xy 4= 1 - (ci/cpn) x ' °f (-vy) (17)

Equation (17) may be solved for cpn to obtain
~2/3,.-1/2

cpn = 51(1 - f X) . (18)

where
2/3 2/3 19

X = xj(-v1 ) = X5 Y4 (19)

and
=2/3
xj = ¥ x1'1. (20)

The simplest configuration is the single positive-gradient surface

duct. Here Eqs. (10) and (15) both apply and the eigenvalue -egquation

reduces to
A1(-x1

]) = 0. (21)

Here the generic x],] represents the single dimensionless variable of
this profile configuration. The eigenvalues are the roots of the Airy
function with sign changed. Equations (18) to (20) with i=1 then gives
an explicit expression for phase velocity in terms of the frequency,

the profile parameters c. and y_, and the eigenvalues (roots of

1 1
the Airy function).




II. UNBOUNDED REFRACTIVE DUCT

Tais section treats the solutions for a two-layer unbounded refractive
duct. The general case of an asymmetric duct is treated with the
symmetric duct as a special sub case.

Figure 1 is a schematic of the duct. The arrows indicate that the two
layers are unbounded. From the standpoint of the normal mode salution,
this profile can be characterized by three parameters. These are the
axial sound speed (c]), the gradient at the axis for the lower layer
(71). and for the upper layer (Y10)°

For the upper and lower layers Egs. (10) and (11) respectively apply.
At the layer interface (axis) Egs. (8) and (9) apply to yield

AnO A1(-x1’o) - An] Ai(—x]’]) = Q. (22)
and
) 1
Ano a9 A1(-X'|'0) - An] a4 A'](-X]']) = 0. (23)
We now let
p = 61/-60' (24)

where ao is evaluated by Eq. (14) and a] by Eq. (4). These expres-

sions lead to

173
p = (v/ 1) - (25)




We now let x = x1 1 The eigenvalue equation may then be expressed

from Eqs. (22) and (23) as

Ai(-p2x) - Ai(-Xx)
= 0. (26)
1 ]
Ai(-p2x) p Ai(-X)

Expansion of Eq. (26) leads to

1 1
G1(X,p) = p Ai(-p2x) Ai(-x) + Ai(-x) Ai(-p2x) = 0. (27)

Thus Eqs. (18) to (20) with i=1 and x]'] equal to the root of Eq. (27)
yield the phase velocity.

Here the dimensionless variables are p and x. The phase velocity is
obtained from Eq. (18) as an explicit function of the frequency, the
profiie parameters c] and Yy and the dimensionless eigenvalue x.
The third profile parameter, Y]O' does not appear explicitly in
Egs. (18) to (20). However it appears in the eigenvalue equation
through the variable p and thus influences the value of x which
satisfies £q. (27).

We note that the solution x of £q. (27) applies to all profiles with
the given value of p. Moreover one eigenvalue set suffices for all
frequencies. The advantages of this characteristic will be pointed out
later in this section. As we shall see later for more complicated
profile confiqurations each eigenvalue set corresponds to a single
frequency.

Consider now the case df a symmetric duct i.e., p=1. Here £q. (27)
reduces to

1
2 Ai(-x) Ai{-x) = 0. (28)

Q




Thus the x1 1 represent the roots of the Airy function with the sign
changed and the roots of the Airy function derivative with the sign
changed. The roots of the derivative correspond to the odd number modes

while the roots of the function correspond to the even number modes.

A computer routine was developed to solve Eq. (27) by Newton;s method.
The procedure starts at p=1 with a known root of Ai(-x) or Ai(-x).

The value of p is decreased by successive steps of Ap and the
solution of Eq. (27) obtained for each step by the iteration

361
Xie] = X§ + Gy (X3,0)/— (29)
ax |Ixj
where
36y 1 1
— = -[(p3+1) Ai(-x4) A'i(-pzx-i) - pxq Af(-x4) Ai(—pzxﬂ . (30)
X X3

The initial estimate of x1 is taken to be the solution of Eq. (27)
for the previous value of p. Once the iteration of Eq. (29) reaches
the desired accuracy, the process is stopped, p is decreased by

ap and the iteration process repeated.

We note that the solutions of Eq. (27) for 0 < p < 1 suffice for all p.
If the result of Eq. (25) is greater than 1, we consider the reflection
of the profile about the axis. For this configuration p < 1.

Figure 2 presents the solution of Eq. (27) as a function of p for the
four smallest roots i.e., the first four modes. At p=1 the odd roots
correspond to the negative of the roots of the Airy derivative and even
roots to the negative of the roots of the Airy function. At p=0, the

10




roots are given by the negative of the roots of the Airy function.
Thus for mode 1 the values of x increase monotonically from x; for

p=1 to xq for p=0. For modes 2 to 4 they increase respectively from

1
x1 to xz, from x2 to x3 and from x2 to x4. When p=0, Eq. (27)

reduces to

1
Ai(-x) A1(0) = 0. (31)

Thus the results of Fig. 2 for p=0 are predictabie.

The solutions of Eq. (31) are the same as Egq. (21) for the single
positive-gradient surface duct. There are two distinct configurations
corresponding to p=0. The first is y1=0 which arises from an isospeed
half space below the axis. The second is Y= which arises from

the 1imit of a steep negative gradient above the axis. Although the
mathematical eigenvalues are the same for both configurations, the phy-
sical results are quite different. For y1=0, the phase velocity of

Eg. (18) reduces to the axial sound speed. For 0= the phase
velocity of Eq. (18) depends in the usual manner on M f, and the
roots of Ai(-x)=0.

We now examine approximate solutions to Eq. (27) as based on Taylor

series expansions about a given solution. Let x0 be the known solu-

tion for Py Let
X = X_ + AX (32)

be the solution for p = p_ + Ap. Let

0

2 2
PX=PO XO+Ay. (33)




where

2 2 2
8y = 8x p- + (P - pglXy- (34)

We expand Ai(-x) and A}(—x)\as Taylor series in ax about x

1 2
Ai(-pzx) and Ai(—pzx) as Taylor series in Ay about o xo.

0’ and

Consider just the case of general Py When the first 3 terms of the
Taylor expansions in Ax and Ay are substituted in Eq. (27), a sur-
feit of 14 terms result. There are two constant terms which represent
Eq. (27), evaluated at xo and Py’ and which sum to zero. There

are two terms each in ax, Ay, and ax Ay. There are three terms

each 1in (Ax)2 and (Ay)z. The result for second-order terms is

too complicated for our purpose here. If we retain only first order
terms in ax and Ay, we obtain as a correction

2 2 2

ax = (py=p2)xy (p+Kpg) /1+p +aK(140p,). (35)
where
K= -x, Ai(- 2x ) Ad(-x )/Al(- Zx ) A%(-x ) (36)
0 P0*0 0 P00 0’-

Equations (35) and (36) then give the value of x for p in a neighbor-
hood about Py

However if the expansion point is taken at p_=1 or p_=0, the expansion

0 0
greatly simplifies. Consider first the expansion for odd modes about
1 1 1 ]
p0=1. Here x0 = X, where X, is a root of Ai(-x)=0. Thus both Ai(-x
3
and Ai(-

0)
pOXO) are zero and the 14 terms for general Po

. . . . 2
oniy 4 terms which have a common factor of A\(—xo) A1(-pox

collapse to

0)' Here the
ax 15 a solution to the quadratic

A(Ax)2 + Bax + C = 0, (37)




where

A = p(p2-p+1)/2, (38)
1
B = xip(p2-p+1), (39)
and
12
C = x4 (p-1) (14p2)/2. (40)

One of the two roots of Eq. (37) is spurious. The desired root of Eq. (37)

2 1/
is obtained by choosing the sign of (B -4AC) 2 in the quadratic formula

as positive. This choice yields ax=0 as the correct root when C=0, i.e.,
when p=1.

In the case of even modes about p0=1, x0

Ai(-x)=0. Here both Ai(—xo) and Ai(-pgxo) are zero and the 14 terms
for general p. collapse to only 2 terms which have a common factor of

=xi, where x1~ is a root of

0

1 1 2
A1(—x0) A1(-p0x0). Here Ax satisfies a linear equation which leads to

AX = - pxi(p—T)/pz -p + 1, (41)

In the case of all modes about p0=0. x0=x1, where xi is a root of

Ai{(-x)=0. Here Ai(—xo)-o. However Ai(—pgx0)=Ai(0). The 14 terms for

1
general Pq collapse to 5 terms which have a common factor of Ai(-x
Here ax is a solution to the gquadratic

0

A(ax) + Bax + C = 0, (42)
where

A= -xi/2, (43)

B = K(1+p3), (44)

C = p(1-pKxyy, (45)




and

1
K = Ai(0)/Ai(0) = -0.7290112. (46)

The desired root of Eq. (42) is again obtained by choosing the sign of
(82-«11\C)”2 in the quadratic formula as positive. This choice yields

ax=0 as the correct root when C=0, i.e., when p=0.

The results of the various approximations are compared with the exact
solution in Tables 1 and 2 for modes 1 and 2 respectively. Column 2
gives the exact solution of Eq. (27) as obtained by iteration. Column 3
presents the application of Eq. (35) for the expansion point p0=0.5.

The value of Eq. (37) is 3.4268069 and 57.9192390 for mode 1 and 2
respectively. Column 4 of Tables 1 and 2 present the applications of
Eq. (37) and (41) respectively. Column 5 presents the application of
Eq. (42).

Equation (37) remains accurate to three significant digits at p=.65

and is the most accurate approximation. Equation (41) remains accurate
to three significant digits at o=.85 and is the second most accurate
approximation. In contrast the accuracies of Eq. (35) and Eq. (42) are
somewhat disappointing. The iterative solution of Eq. (27) is the
method of choice. If accurate algebraic approximates are desired, we
recommend that the guadratic counterpart of Eq. (35) be developed and
its accuracy about various expansion points assessed. We believe that
this quadratic counterpart at various expansion points together with
Egqs. (37), (41) and (42) can provide accurate algebraic approximations.
This approach is laborious to develop but is straightforward.

We now compare the solution of Eq. (37) with that of Eq. (41) for
values of p near 1. Let

p = l-tp. (47)




We expand the solutions as power series in Ap. The general form is
2
ax = x(1) Ap [1 + Dap + E(8p) ], (48)

where x(1) represents the solution for p=1. In the case of Eq. 37,
0=1/2 and E=-1/2. 1In the case of £q. (41), D=0 and E=-1.

We now assess the modified phase integral result of Ref. 2. If we use
the modified n of Eqs. (38) and (39) of Ref. 2 and expand Eq. (6) of
Ref. 2 as a power series in Ap we find Eq. (48) holds with 0=1/4

and E=-13/6. Thus we see that the modified phase integral result
agrees with the result of Eqs. (37) to (41) to first order in ap.
Moreover the modified phase integral result lies exactly midway between
that for Egs. (37) and (41). This result is gratifying,'because the
modified phase integral result must be applied to both odd and even
modes. The result properly makes a compromise by "splitting the
difference" between the approximation for odd and even modes. Our
conclusion is that for vaiue of p near 1 the modified phase integral
result of Ref. 2 represents a fair approximation which is not quite as
good as that of Eqs. (37) and (41).

We now present a modified phase integral approach which results in
exact values of phase velocity for an asymmetric refractive duct. We
set £Eq. (19) equal to Eq. (6) of Ref. 2 and solve for n. The result is

n = 2x3/2 (1+p3)/3w + 172, (49)

where x is the solution of Eq. (27) for the given p. Note that when
p=1, £q. (49) 1s identical to Eg. (38) or (39) of Ref. 2. When p=0,

Eq. (49) 1s identical to Eq. (38) of Ref. 2. Thus Eq. (49) takes on the
proper values for p=1 and p=0.




The validity of Eq. (49) was further checked by appiying the method to
the two single unbounded ducts treated in Ref. 4. Figure 3 is a copy

of Fig. 31 of Ref. 4. The circles are the normal mode phase velocities
as determined for each duct by the first approach described here in the
introduction. The dashed and solid curves represent the phase integral
result for the upper and lower ducts respectively. As can be seen there
are systematic differences between the ray and mode results. These
differences were attributed to duct asymmetry.

To apply Eq. (49) we first evaluated the value of p for the ducts.
These values of p were 0.593636 for the upper duct and 0.806781 for
the lower duct. Table 3 presents a summary of results. Column 1 is
the mode number. Column 2 is the modified n, which applies for sym-
metric ducts, as determined by £Eqs. (38) and (39) of Ref. 2. The
entries of columns 3 and 5 are the roots of Eq. (27) for the upper and
Tower ducts respectively. Columns 4 and 6 are the corresponding value
of Eq. (49) as determined by x and p3.

The curves of Fig. 4 are the counterparts of those of Fig. 3, where the
non-integral mode numbers of Table 3 are used rather than the integral
values of the phase integral curves of Fig. 3. We have overlaid these
cuyrves on the mode data of Fig. 3 and found that they go through the
centers of the circles within the plotting accuracy. Thus, this check
demonstrates that for the asymmetric refractive duct the use of Eq.
{49) brings the results of the phase-integral method of ray theory into
congruence with the exact normal mode solution.

Figqure 4 also illustrates an advantage of the dimensioniess variable ap-
proach. Each curve of Fig. 4 requires only one set of iterations of the
eigenvalue equation, 1.e., £q. (27), to determine the x for the given p
and desired mode number. In contrast the circles of Fig. 3 were ob-
tained by the usual approach 1n which the phase ve'oc ity 1¢ determined
oy iterating the eigenvalue equation for each desired frequency. Thus
the qeneration of circles ot fF1g. 3 requires about 100 *t mec the number

of sets of iterat-ons a< di1d the generation ot the rurves




Observe in Fig. 3, the larger displacement between ray and mode theory
for the upper duct as compared to the lower duct. In Ref. 4 we
attributed this to the fact that the p for the upper duct was smaller
than that of the lower duct. We now know that this conclusion was in
error. Consider for example entries 4 and 6 of Table 3 for mode 1. We
see that n=1 (the value for the phase-integral curves 1U and 1L of Fig.
3) lies closer to the upper duct entry than to the lower duct entry.
why then does the phase-integral curve for the upper duct lie further
away from the mode theory solution? The answer lies in the fact that
(71.)2/3 appears as a factor in Eq. (19). This factor is about

4.3 larger for the upper duct than for the lower duct. Thus if the
error in x (n) were the same for both ducts the error in the x of Eq.
(19) would be 4.3 times larger for the upper duct. We see then that
the larger discrepancy for the upper duct is associated with a larger
gradient rather than larger p,.

We close this section with the presentation of Fig. 5 which is based on
the double duct of Ref. 4. The circles represent the normal mode
results for modes 2 and 3 of the double duct. The curves are the
modified phase integral results, based on Eq. (49), for mode 1 of the
upper duct and mode 2 of the lower duct.

The curves are good approximations to the double-duct results with the
exception of the region where the curves cross. Thus we see that the
solutions for the single refractive profile of Fig. 1 are useful in the
wider context of double ducts with a surface boundary. The same conclu-
sion was reached in Ref. 2 for the case of a surface duct overlaying a
symmetric refractive duct. However this conclusion is based on
numerical examples. One of the remaining tasks of this article is to
demonstrate analytically the relationship between a s mple unbounded
duct or a single-layer surface duct and more complicated profiles such
as the double duct of Ref. 2.




III. REFRACTIVE OUCT WITH SURFACE

The simplest extension of an unbounded refractive duct is to bound the upper
layer with a free surface. Figure 6 presents a schematic of the profile,
which is characterized by four parameters. These are the axial sound speed
(cz), the gradients at the axis for the lower layer (yz). and for the

upper layer (720). and the sound speed at the surface (c]).

We let

X2,2 =X = (u2/c§-x§)/a§. (50)

X9, =Y = (wz/cf-kﬁ)pz/ag- (51)
where

b= (rylm1y) >, (52)
and

X2, plx. (53)

The eigenvalue matrix may be expressed as

Af(-y) Bi(-y) 0

Ad(-pex) Bi(-p2x) -Ai(-x) | = 0. (54)
1 1 1

Ad(-p2x) Bi(-p2x) pA1 (~x)

This may be written as

n
(e

G(x,y,p) = At(-y)Gp + Bi(-y)G (55)
where Gy is given by Eq. (27), and

1 1
Gy = pBi(-p2x) Ai(-x) + Ai(-x) Bi(-p%x). (56)




Equation (55) may be considered as expressing the eigenvalue x for given
values of the parameters p and y. The parameter o is determined by

the sound speed profile. Although we are free to choose the value of v,
this choice specifies the frequency. This characteristic may be demon-
strated by eliminating xn from Eqs. (50) and (51) and solving for
frequency to obtain

-3 -1
£ = (et Y D1-(epre 2172 (mypgie (57)

The steps in the solution are as follows:

1. We choose a value of y.

2. The eigenvalue equation, Eg. (55), is solved for x, for the
chosen value of y and the value of p for the desired profile.

3. The frequency is determined from E£q. (57), with the use of v,
x, and other parameters for the desired profile.

4. The phase velocity is determined from £q. (18) with the use of
x, the frequency of Eq. (57), and the parameters c2 and
yz for the desired profile.

If we have available the solution of Eq. (55) for all values of p and
y we have the eigenvalues for all frequencies and for all profiles of
the generic form of Fig. 6. The solution of Eq. (55) may be obtained
by the iteration

Xi41 = X3 + [G/(36/3x)] i (58)
i
where
3G/3x = Ai(-y) (aG,/ax) + Bi(-~y) (aG]/ax) (59)

Here an/ax is given by Eq. (30) and

] 1
36/3G = - [p3+1) [Ai(-x) Bi(-p2x) - px Ai(-x) Bi(-p2x)] (60)
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Figure 7 presents the first five roots of Eq. (55) as a function of vy
for the case of p=1. Consider now the physical interpretation of y.

We see from Egs. (51) and (16) that y=0 corresponds to ¢ =c1. This
corresponds to the case of a ray grazing the ocean surface. Positive
values of y represent modes with phase velocity greater than the surface
i.e., rays reflecting from the ocean surface. Negative values of vy
correspond to propagation in the refractive duct with no reflection

from the surface.

Consider the case of large negative y. From Eq. (57) this corresponds
to high frequencies. This then represents the case of strongly trapped
modes. The appropriate asymptotic expressions for Ai(-y) and Bi(-y)
are given by Eqgs. 10.4.59 and 10.4.63 of Ref. 5. These expressions
lead to

-1
Ai(-y)/Bi(-y) ~ 2 exp (-2¢), (61)
where
{ = 2(-y)3/2/3. (62)

Thus Eq. (61) approaches zero for large negative y and Eq. (55) reduces
to Eq. (27). Thus we have reached our initial goal. For high frequen-
cies (strongly trapped modes) the eigenvalues for the bounded duct of
Fig. 6 approach those of the unoounded duct of Fig. 1.

Consider now the solid horizontal lines of Fig. 7. These represent the
roots of E£q. (28), i.e., ronts of the Airy function and its derivative.
Equation (28) is the solution of Eq. (27) for the special case of p=]
i.e., the condition of Fig. 7. We see that the roots of Eq. (55)
rather rapidly approach those for the unbounded duct as y 15 decreased
below zero.

NG




Consider next the solid vertical l1ines of Fig. 7. These lines are
located at the roots of Ai(-y)=0. We see that Egq. (55) again reduces
to Eq. (27) in general and to Eq. (28) for p=1. Thus in Fig. 7 each
curve crosses the vertical solid 1ines at the horizontal lines which
are the roots of Eq. (28).

Moreover we note that Eq. (55) reduces to

G2 = 0, (63)

when Bi(-y)=0. For the special case of p=1, Eq. (63) reduces to

1 1
Bi(-x) Ai(-x) + Ai(-x) Bi(-x) = 0. (64)

With the use of the Wronskian for the Airy functions Eq. (64) may be
simplified to

Ai(-x) Bi(-x) + (2«)'1 = 0. (65)

Equation (65) has been solved by iteration. The first five roots are
given in column 2 of Table 4. These roots are plotted as dashed
horizontal lines in Fig. 7. The vertical dashed lines correspond to
the roots of Bi(-y)=0. We see that the curves of Fig. 7 cross the
intersections of the dashed lines.

We now see the advantage of the dimensionless variable approach.
Figure 7 provides the eigenvalue for the first five modes for all
profiles of the generic form of Fig. 6 with the restriction that the

refractive duct is symmetric.

We next examine Eq. (57). We see that when

Yy = p X, (66)
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the frequency is zero. Figure 8 again presents the eigenvalue curves.
The slant line is the locus, y=x, i.e., Eq. (66) for p=1. Eigenvalues
on the slant line represent zero frequency. Eigenvalues to the left of
the slant line represent real frequencies while those to the right
represent pure imaginary frequencies.

The points of intersection of Eq. (66) with the eigenvalue curves can
be expressed analytically. Substitution of Eq. (66) into Eq. (55)
leads to

1 1
2p Ai(=p2x) Bi(-p2x) Ai(-x) + Ai(-p2x) Ai(-x) Bi(p x)
1
+ Bi(=p2x) Ai(-x) Ai(-p2x) = 0. (67)

For the special case of p=1, Eq. (67) reduces to

1 1
Ai(-x) [3 Bi(-x) Ai(-x) + Ai(-x) Bi(-x)] = 0. (68)

With the use of the Airy function Wronskian the bracketed expression of
Eq. (68) may be further simpiified to

1
Ai(-x) Bi(-x) + (4%)~1 = 0. (69)

This equation is similar to Eq. (65) and has been solved by iteration.
The solution to Eg. (68) then consists of the roots of Eq. (69) plus
the roots of Ai(-x)=0.

The first five roots of £q. (68) are given in column 3 of Table 4.
Roots 1, 2, 4, and 5 are the first four roots of Eq. (69), whereas root
3 (and 6) are roots of Ai(-x)=0. These roots are plotted as solid
norizontal lines in Fig. 8. wWe see that the curves of Fig. 8 do indeed

cross at the intersection of the slant line with the horizontal iines.




Although Fig. 7 only presents positive values of x, there are negative
roots. Figure 9 presents the continuation to negative values of the
curve of Fig. 7 for the lowest order root. The curve crosses zero at
the first root of Bi(-y)=0 as previously discussed and approaches the
first root of Ai(-y)=0 as a vertical asymptote. This latter
characteristic is a consequence of the fact that both terms of Eq. (28)
go to zero as x»-o. In general the curve of order n will cross

zero at the n'th root of Bi(-y)=0 and will approach the n'th root of
Ai(-y)=0 as a vertical asymptote.

We will not present the counterpart of Fig. 7 for other values of p,.
However each value of p has a horizontal and vertical grid of lines
which bears the same relationship to the curves as shown in Fig. 7.
The vertical grid is always the same because it does not depend on
p. The solid 1ines of the horizontal grid are the solutions Eq.
(27). For example, for p=0.5 from Table 1 and 2 we see that the
first and second solid horizontal lines would lie at 1.64 and 3.35
respectively. Thus for example the second mode curve for p=0.5 is
asymptotic to 3.35, crosses 1.64 at y=4.09, and approaches a vertical
asymptote at y=5.52 for x=-=. This last property holds because Eq.
(27) s satisfied for all p with the possible exception of p==,

As p varies from 1 to O the solid horizontal line for root n of Figq.
7 moves monotonically up from its present position to the n'th root of
Ai(-x)=0. This is readily inferred from the results of Fig. 2.

In the case of Fig. 1 we did not have to deal with p>1; whereas we
must do so for the case of Fig. 6. One may readily verify that if x is
a root of Eq. (27) for o, then

X=p2X
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is a root for p-]. For example the root of Eq. (27) for p=2 for the
first order root is X=0.25(1.64)=.41. Thus as p varies from 1 to =

the solid horizontal lines of Fig. 7 move monotonically down from their
present positions and approach x=0 as a limit.

For other values of p the dashed horizontal lines are the roots of

Eq. (56). We note that the solid and dashed horizontal lines of Fig. 7
are interleaved. Thus as the solid lines move upward with decreasing

p s0 will the dashed lines. Similarly the dashed lines will move

down with increasing p. There may be some question regarding the
dashed horizontal line at zero. The elements of Egq. (56) were expanded
jn Taylor series about the point x=0. It was found that this root
moved upward for p<1 and downward for p>1. Thus for p<l1 or

p>1 x will turn negative for y larger or smaller than the

appropriate root of Bi(-y)=0.

For other values of o the horizontal lines of Fig. 8 are the roots of
Eq. (67). The x curves will intersect these 1ines along the line

2
y=p X.

In summarizing the results of Fig. 7, we note that the curves are
surprisingly simple and well behaved. The set of vertical and
horizontal lines provide a framework, which makes their characteristics
quite predictable. The dependence of frequency in £q. (57) on the
eigenvalues x and y makes the problem more complicated than that of the
unbounded duct. However given an x versus y eigenvalue curve we can
readily generate from Eq. (57) the frequency associated with the
desired profile.

Although plots giving x as a function of y for various values of »
will provide all eigenvalues for the profile configuration of Fig. 6,
we decided to prepare a plot giving x as a function of p for a fixed
value of y. We chose as our example y=0, because this corresponds to
the interesting case of the ray which grazes the ocean surface i.e.,

C =c]. Figure 10 presents the first four roots of £q. (55) as a
p
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function of p for the case of y=0. The roots were again obtained by
the method of Egs. (58) to (60). The process was started at p=l
using the values of x from Fig. 7 that correspond to y=0. The curves
of Fig. 10 were then generated by moving o from 1 up to 4 and from 1
down to zero.

Qur first reaction to Fig. 10 was that the results were in error. We
note that these results go to the roots of A}(-x)=0 for p=0, whereas
we expected them to go to the roots of Ai(-x)=0 for p=0. If we set
p=0 in Eqs. (27) and (50), Eq. (55) can be simplified to

1 1
Ai(-x) | Ai(-y) Bi(0) + Bi(-y) Ai(0)

0. (71)

Thus it would appear that Ai(-x)=0 provides the roots for Eq. (71) and
indeed it does except for our unfortunate choice of y=0.

When y=0 the term in the brackets of Eq. (71) is zero. This opens the
possibitity of roots other than Ai(-x)=0 for p=0. It became evident
that a more sophisticated analysis was required. We let p=¢,

expressed the various Airy functions with argument -pZX as two-term
Taylor series expanded about zero, substituted these series in £q.
(55), and collected terms of various order in ¢. The zero-order term
was the left side of Eq. (71), which is zero for y=0_ as previously
discussed. The first-order term was 2cAi(0) Bi(0) Ai(-x). There was
no second order term. The third-order term was —2c3xA1(0) 81(0) Al(-x)
The fourth-order term was Z2¢ x2A1(0) Bi{0) Ai(-x). We see that A1( -x)=0

is indeed the 1imiting root as p=e»0, because this results in all
items of order through c3 to be zero.

in order to verify the analysis of £g. (71), we examined the first root
of £q. (55) as a function of o for the case of y=-1. Here the root
went to 2.338 for o=0 as predicted by tqg. (71). Further anatysis is
beyond the scope of the present article. It would be of interest for

examp'e to examine the behavior for fixed values of y near zero for
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values of p near zero. Would the curves for y=+c be nested about
the curves of Fig. 10 for small p? If so how do they approach a
different limit at p=0?

We note that Fig. 10 exhibits another characteristic that we discussed
in connection with Fig. 7, 1.e., x increases as p decreases below 1
and decreases as p increases above 1.

IvV. DOUBLE DUCT PROFILE

This section addresses one general form of double duct profile. A
brief discussion of the application of the method to more general
profiles is presented. Figure 11 presents the schematic of a double
duct profile which consists of a surface duct overlaying a refractive
duct. The duct can be characterized by six parameters. These are the
surface sound speed (c]), the barrier sound speed (cz). the axial
sound speed (ca) and the gradients at the top of the three layers
i.e., Yy Yoo and 73. Other gradients of interest such as Y20 and

130 may be derived from the given parameters with the use of Eq. (13).
The surface sound speed may be larger or smaller than the axial sound
speed. However both c] and c3 must be less than c2.

There are five mathematical variables which we define as follows:

2 2 2
X3,3 =X =(w2/C3 - uz/cp)/a3, (12)
X = w =( 2/c2 - 2/c2)/a2 (73)
2,2 w 2 w D 2:
2 2 2
X7 1 =y =(w@/cy - wl/cp)/ay, (14)
' 1/3
p = (Yz/“fao) -5
and
77
o, = -y, v .




The eigenvalue matrix may be expressed as

Ai(-y) Bi(-y) 0 0 0
2 2 (1)
Af(-p1w) Bi(-p1w) -Af(-w) -Bi(-w) 0
1 2 1 2 1 1
Af(-p1w) Bi(-21w) PIAT(-w) P1Bi(-w) 0 = 0.
0 0 Ai(-p2x) BY(-p2x) ~Af(-x)
] 0 Al(-pr) Bl(-pzx) pAl(-X)
This may be written as
Ai(-y)[G1H]-62H2] + B1(—y)[G]w3-62w4] = 0, (78)
where
2 1 1 2
Wy = p1B1(-pyw) Bi(-w) + Bi(-pyw) Bi(-w), (79)
2 1 1 2
Wy = P1B1(-pyw) A1(-w) + Bi(-pyw) Ai{-w), (80)
2 1 1 2
Wy = P1AT(-pyw) BI(-w) + Ai(-pyw) Bi(-w), (81)
2 1 1 2
Wy = p1AT(-pyw) Af(-w) + Ai(-pyw) Ai(-w), (82)
and G1 and G2 are given by Eqs. (27) and (56) respectively.

In carrying forward the solution for the profile of Fig. 11, it is
convenient to discuss it, as well as the simpler profiles already
treated, in the context of a general profile consisting of n interfaces
and m poundaries. For such a profile there are 2n+m+! profile

parameters and the two physica) parameters f and ¢_ for a total! of
2n+m+3 variables. [n the first approach 2n+m+2 variables are
considered independent while the dependent variable, ¢ , 135

p

constrained by the eigenvalue eguation.




In the second approach the number of introduced mathematical variables
is 2n+#m. This is the number of interface and boundary conditions the
eigenvalue matrix must satisfy. Moreover there are introduced 2n+m
constraints which define the mathematical variables in terms of the
profile and physical parameters. We treat 2n+m-1 of the mathematical
variables as independent with the remaining one satisfying the eigen-
valuye equation. Thus of the 2n+m+3 profile and physical variables,
2n+m are dependent while the remaining three are independent.

Consider in this context the simpler profiles, already discussed. In
the case of the single-layer surface duct the three independent

variables are c], y], and f while the dependent variable is ¢ as given

by Eq. (18). In the case of the profile of Fig. 1, the three indepen-

dent variables are again c], Y, and f. The two dependent variables are

Y0 as constrained by Eq. (24), and cp as given by Eq. (18). In the

case of the profile of Fig. 6, the three independent variables are c],

CZ' and 120. The three dependent variables are 72 as given
by Eq. (52), f as given by Eq. (57), and cp as given by £q. (18).

wWe are now ready to proceed with the case of Fig. 11 for which n=2 and
m=1. We thus must select three independent and five dependent
variables. For the independent variables we select c2, ¢., and vy_.

3 3

The dependent variable, 72. is constrained by Eq. (75) and the relation~

ship 72=(c2/c3)3730. The dependent variable, f, is constrained
by

3200 2.-3/2 1

£ = (pox-w) VRS BT E NS (83)

2
tEquation (83) was obtained by eliminating Cp from Eqs. (72) and (73)
and sciving for f. Equation (83) is the same as £q. (57 with tne

;ubotitution of counterpart parameters Given this ‘reguency ane may




determine the dependent variable cp from Eq. (18) using the eigen-
value x and the appropriate parameters associated with the third inter-
face of the profiie. We next determine the dependent variable, ¢
from the constraint

1'

2/3 -2/3 =2/3 -2 -2
¢y = (y20 f - cay+cp )t/ (84)

Equation (84) was obtained by solving Eq. (74) for cy- OQur fifth and
final dependent variable v, is constrained from £q. (76) and the

relationship Yy = (C1/C2)3720'

We see that the buiid up of the number of dependent variables with
increasingly more complicated profiles puts severe limitations on the
second approach. In fact the nature of £q. (84) renders the second
approach essentially useless. The basic idea behind the second
approach was to determine eigenvalues in terms of the mathematical
variables and as independently of profile parameters as possible. The
problem with the profile of Fig. 11 is that we cannot express c1 in
terms of mathematical variables in a useful manner. For example a
given eigenvalue set, together with other profile parameters, produces
a specific value of c1 which in general will not be useful. On the
other hand we cannot readily determine other variables, which will
produce a desired value of c] as these variables are not independent

of each other. For example x is a function of y, f is a function of

c2 and x, and cp is a function of f.

At this stage we should note that our choice of the three independent
variables as c2, c3, and Y, is somewhat arbitrary. For certain
parametric studies of the theory it may be of interest to consider
other sets of three variables as independent. However the use of other
sets will not solve the basic problem of the profile of Fig. 17 The
one boundary and two interfaces lead to five dependent varidbies which
are too many for the approach to cope with




The problem becomes even worse for exampie if the profile has four
distinct sound speeds at various interfaces or boundaries. Here two of
these sound speeds must be dependent variables and will be subject to
various constraints such as Eq. (84). We note at this point that the
problem with the second approach stems from the presence of more than
two distinct sound speeds at interfaces or boundaries. If the profile
is 1imited to two distinct sound speeds then the second method is
useful and is similar to the case of Sect. IIl where the x and y
variables are associated with the two sound speeds. There will be a
suite of P constraints rather than the single o of Sect. III.

However these constraints pose no fundamental problem to the second
method, other than to complicate the eigenvalue equation. Examples of
this will be given later,

Consider now the case of strongly trapped modes for the case of Fig.

11. From Eq. (B83) we see that high frequencies correspond to large
negative w. If we replace each Airy function in Eqs. (79) to (82) by
its first asymptotic term and evaluate for large negative w we find that

172 3

Wi ~ 29 1p7 exp |(1+e1)C ], (85)

Wy ~ 0, - (86)

Wy ~ 0, (87)
and

-1 -1 172 3

Wg ~ -2 v p1 exp |-(T+p7)(], (88)
where

¢ = 2(-w)3/2/3. (89)

Thus £g. (78) may be apprcx<imated by

_] 3
Avi-y) Gy + 4 Bi(-y) Gp exp |-2{1+p1)¢ | = 0 190

)




For large negative values of w, Eq. (90) reduces to
Af(-y) G] = 0. (91)

Now 61-0 ts £q. (27), the solution for the unbounded refractive duct.
A1(-y)=0 is the solution for the positive-gradient surface duct. Thus
at nhigh frequencies the eigenvalues for the profile configuration of
Fig. 11 become the composite of those for the surface duct and the
unbounded refractive duct.

Figure 5 illustrated numerically that at high frequencies the
eigenvalues for a double duct were related to those of the single
ducts. The derivation of Eq. (91) has demonstrated this result
analytically. The result is not new but the manner in which it arises
is of1interes¥. The result arises from the asymptotic behavior of Ai,
Bi, A1, and Bi and the particular location of these elements in the
eigenvalue matrix of Eq. (77).

We have already demonstrated that the second approach is not practical
for the general configuration of Fig. 11. Consider now Table 5 which
outlines the various cases that arise when the six profile parameters
are related by various conditions. Case numbers are assigned in column
1 for ease of identification. Column 2 gives the condition and column
3 1ists the mathematical variables.

Case 1 1s the general case with six independent profile parameters and
five mathematical variables. (Case 2 to 4 represent the equality of
various pairs of gradients. C(Case 2 eliminates o and case 3

eliminates Py The condition of case 4 leads to the constraint
PP, =C}/(.3. (92)

However thic does not el minate any of the mathemat:ica wvar-at eq




Case 5 is significant because it leads to elimination of y as a
variable and to the necessity for Eq. (84) as a constraint. To

demonstrate this we note that p‘ﬂa/a and p.=a_/a_ . Hence

2 12

PP, = 63/31. (93)
fquation (93) is true for the general profile. However if c1=c3,
then £q. (74) may be written as

y = (pp1)zx (94)

and y is eliminated by an expression involving three of the other
mathematical variables. We see that the seccnd approach now becomes
viable. The situation is akin to that of Sect. IIl except we must deal
with two gradient ratios rather than one.

Case & 15 the combination of cases 2 and 5 and eliminates y and ».
The profile investigated in Ref. 2 is of this type. Case 7 is the
combpination of cases 3 and 5 and eliminates y and 2 Case 8 is
the combination of cases 4 and 5 and eliminates y and Py Equation
(93) holds and reduces to

ppy = 1 (95)

for c3=c]. Thus Eq. (95) may be used to eliminate Py

Case 9 is the combination of cases 2 and 3 and eliminates o and

2 Cases 10 and 11 are the combination of case 4 with cases 2 and
3 respectively. Neither results in any change from cases 2 and 3
because Eq. (93) does not reduce the variables unless c1=c3.
Finally case 12 is the combination of cases 2 to 5 and eliminates al)
but the x and w variahles. we note that given any three of the four
conditions case 12 implies the fourth condrtion. Thus there are no

distinct rases involving three conditions.




In closing this section we note that the vital feature of profile
simplification in Table 5 is the elimination of the variable y. The
apparent elimination of gradient ratios by making them equal to unity
is not really a significant simplification. The ratio of unity still
remains as a3 constraint on the profile parameters and the eigenvalue
equation is not really less difficult. For exampie the solution of Eq.
(78) is not significantly more difficult for p=0.5 than it is for

e=1. The elimination of gradient ratios may actually have an adverse
effect. For example we suspect that case 12 of Table 5§ leads to
degenerate eigenvalues, because of the symmetries involved.

V. AREAS FOR FURTHER INVESTIGATION

Much of the work outlined here is concerned with the comparison of
various ray theory approaches with normal mode theory by means of the
phase and group velocity. This is the major thesis of Ref. 3, which
was written before the present articie was begun. We have shown that
at high frequencies the mode theory phase and group velocities for
various bounded ducts goes to the solution for simple unbounded ducts.
Moreover through the use of non-integral n we can make ray theory phase
and group velocities agree with the modal result for the simple
unbounded ducts. The idea is to use non-integral n in the phase
integral method which would utilize “corrected" expressions for E, ?,
Ei’ and Eo as specified by the ray theory approach under test. The
use of non-integral n would be superior to the use of integral n

because the ray theory result would now go to the exact high frequency
limit.

There are two general extensions of the present article which would be
useful in the comparison of ray theory approaches. We have presented
the solution for a positive-qradient duct with a free-surface

noundary. The first extension is to determine non-integral value< of n

*nat will make ray theory exact for a negative-gradient duct with a




rigid-bottom boun?ary. In this case the non-integral n's are a function
of the roots of Ai rather than Ai. A second extension is to develop

and analyze expressions for group velocity making use of the
dimensionless mathematical variables.

Reference 3 recommended three ray theories for comparison. We will
only outline them here. There are two important updates to Ref. 3.
The first is that we now have available Eq. (49) for treating
asymmetric ducts. The second is that we recognize that the second
method of determining eigenvalues is feasible as long as no more than
two distinct sound speeds are present in the profile model.

One of the ray theories cited in Ref, 3 is associated with the
introduction of medium attenuation through the use of complex
coefficients in the sound speed model. We first note that the solution
of Sect. Il remains valid for complex parameters. Thus the phase
integral method with nan-integral n gives the identical solution for
mode attenuation as does the normal mode theory. The implementation of
this approach will require the solution of Eq. (27) for complex p.
Furthermore the n of Eq. (49) will have an imaginary component. There
are two other ray approaches which can be tested against this

solution. The first approach integrates the local éttenuation along
the ray path and divides by E to obtain the attenuation coefficient.
The second approach uses rays with complex phase velocity. Here the
attenuation coefficient is given by ulm?/a.

A second ray theory for testing is that of Ref. 5 which treats free or
rigid boundaries. The profile of Fig. 6 can be used to test a free
boundary. The left profile of Fig. 12 can be used to test both free
and rigid boundaries.

A *nird ray theory for testing is that of Ref. & which treats rays

turning near or barely penetrating a relative maximum in sound speed.




Figure 11 with c]=c3 represents a semi-bounded profile suitable for
such testing. The right profile of Fig. 12 presents a simpler profile

for such a test.

We now turn to further work not concerned with testing ray theories.

We first note that there remain some interesting questions about Sect.
I11. What is the significance of pure imaginary frequency? What is
the behavior for small y and p as previously discussed? We call
attention to another feature of Fig. 8. Suppose y=1.0. Here the
smallest eigenvalue does not correspond to a real frequency. Thus the
second eigenvalue must correspond to the first mode. However as y is
decreased the second eigenvalue must correspond to the second mode when
the frequency of the first eigenvalue turns real. This implies that
the eigenfunction for the second mode must have one node at y=1.0 and
this must change to two nodes as y is decreased. Consider the more
extreme case of the fifth eigenvalue curve in Fig. 8. At y=-3.0 this
is the fifth mode with 5 nodes in the eigenfunction. As y is increased
the mode number (and number of nodes) will decrease by one each time
one of the lower-order eigenvalues crosses the line y=x.

We also recommend that the counterpart of Fig. 7 be generated for the
profile of Fig. 11 with c]=c3. This would not only represent a
more complicated application of the second method, but would shed some

analytic insight into some of the unrescived problems of Ref. 2.

VI. SUMMARY

Two general approaches to eigenvalue problems have been considered. In
the first or usual approach the dimensionless mathematical variables
are evaluated numerically in items of the physical and profile
parameters The elgenvalue matrix s then iterated by numerical

methods to determine the mode phase veiocity in terms of the frequency

s




and profile parameters. In the second approach, which is the main
subject of this article, the eigenvalue equation is initially solved in
terms of tne mathematical variables for some generic profile
configuration. The mode phase velocity is then evaluated in terms of
the frequency, mathematical eigenvalues, and the parameters for any
desired profile of the generic configuration.

The simplest generic configurations only involve profiles with two
parameters. There are two configurations of this type. The first is a
surface duct consisting of a positive-gradient half space bounded above
by a free surface. The second is a negative-gradient half space
bounded below by a rigid bottom surface. Here there is one variable in
the eigenvalue equ?tion whose solution is the roots of Ai(-x)=0 for the
free surface and Ai(-x)=0 for the rigid surface. The phase velocity
may then be solved in terms of these Airy function roots and the
independent variables of frequency and two profile parameters.

The next more elaborate configuration involves a profile with three
parameters. This is an unbounded refractive duct. Here there are two
mathematical variables x and p (a ratio of gradients). Here the
eigenvalue x is solved as a function of p. These eigenvalues have
been computed for the first four modes for 0<p<1. Values for

p>1 can be simply expressed in terms of the solution of p—1.

Once the value of x has been obtained the solution proceeds as for the
simplest confiquration.

The next more elaborate configuration involves two different sound
speeds. A detailed evaluation has been carried out for one such
configuration. This is a refractive duct bound above by a free surface
but unbounded below. Here the profile has four parameters while there
are three mathematical variables. These are x and y, associated with
the two respective sound speeds, and the ratio of axial gradients p.
Here the eigenvaiue x is solved as a function of y for a fixed value

o.




These eigenvalues have been computed for the first five roots for

p=1. The behavior for other values of p can be readily inferred.

For any configuration with two distinct sound speeds the frequency can
no longer be treated as an independent variable. It is a dependent
variable which is a function of x and y and the profile parameters.
Once the frequency has been determined as a dependent variable the
solution proceeds as previously discussed.

The second approach cannot be carried out when there are three distinct
sound speeds at interfaces or boundaries of the generic profile
configuration. This is demonstrated for the case of a surface duct
overlaying a refractive duct. Here the three sound speeds are that at
the surface, at the duct axis, and at the barrier between the ducts.
The problem here is that all three sound speeds cannot be specified
independently. One of the sound speeds must be expressed as a
dependent function of the mathematical eigenvalues in order to satisfy
the constraints between profile parameters and mathematical variables.

However the second approach is viable for degenerate profile
configurations where the interface and boundary sound speeds reduce to
only two distinct values. An example is & double-duct configuration,
just referred to, for which the surface and axial sound speeds are the
same. Other examplies are a refractive duct bounded above and below by
boundaries at the same sound speed or a positive-gradient surface duct
overlaying a negative-gradient bottom reflected duct with the surface
and bottom sound speeds the same. For these degenerate configurations
the solution proceeds in essentially the same manner as described
previously for the refractive duct bound above by a free surface and
unbounded below. The chief difference is that the eigenvalue equation
is more complicated and may involve several ratios of gradients, i.e

c

one ratio for each profile interface




The second approach has several advantages over the first approach.
One advantage is that the second approach solves the eigenvalue
equation for a generic profile configuration. These eigenvalues may
then be used to determine phase velocity for any desired member of the
profile configuration. In contrast the first approach treats each
profile and frequency as a distinct problem and is in effect solving
the same problem over and over again. C(Consider for example the
unbounded refractive duct. The second approach requires one set of
iterations for each of the desired values of p. The first approach
requires a set of iterations for each frequency desired for a given
profile and the entire process must be repeated for each profile
desired.

Another advantage of the second approach is the relative ease with
which the eigenvalues can be determined. The presented numerical
examples exhibit a simple behavior with a wealth of mathematical
properties which can be used to interpret the behavior of the
solution. An excellent example is the refractive duct with surface
boundary. Here the eigenvalue curves go through the lattice points of
strajght horizontal and vertical lines which occur at various roots of
the Airy functions and their derivatives. By comparison finding
eigenvalues by the first approach is 1ike “shooting in the dark".

Another advantage of the second approach is the analytical results that
can be obtained. Consider for example the behavior at high
frequencies. The eigenvalues for a bounded refractive duct were
demonstrated to go to the eigenvalues for an unbounded refractive duct
for high frequencies. Similarly the eigenvalues for a double duct
configuration consisting of a surface duct overlaying a refractive duct
were demonstrated to go to the composite of the eigenvalues for a

half-bounded surface duct and for an unbounded refractive duct.

Another example of an analytical resuit is the development of
non-integral mode numbers. With the use of non-integral values of mode

numbe~ the phase inteqral method of ray theory has been brought into

s




congruence with the exact solution of normal mode theory for the case
of an asymmetric refractive duct without boundaries. The ray theory
expressions for phase and group velocity are identical to those of mode
theory. These expressions are valid for all frequencies. They are
also valid for sound speed profiles in which attentuation is introduced
by means of complex coefficients in the profile representation.

A third example of an analytical result is the presence of eigenvalues
corresponding to pure imaginary frequencies. Of course if it occurred
to one to do so, one could have obtained this result by the first
approach by letting f2 be negative.
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Table 1.

.00
.95
.90
.85
.80
.15
.70
.65
.60
.55
.50
.45
.40
.35
.30
.25
.20
.15
.10
.05
.00

mode 1 with three algebraic approximations.

Eq. (27) Eq. (395) Eq. (37)
1.01879 1.27599 1.01879
1.07100 1.31096 1.0710%
1.12574 1.34645 1.12576
1.18295 1.38239 1.18302
1.24254 1.41870 1.24280
1.30436 1.45531 1.30510
1 36823 1.49211 1.37001
1.43393 1.52902 1.43774
1.50120 1.50592 1.50870
1.56975 1.602M 1.58362
1.63928 1.63928 1.66368
1.70949 1.67553 1.75076
1.78009 1.71137 1.847178
1.85083 1.74673 1.95931
1.92148 1.78157 2.09272
1.99187 1.8159 2.26050
2.06189 1.84984 2.48560
2.13148 1.88360 2.81616
2.20066 1.91763 3. 3717127
2.26948 1.95273 4.66840
2.33811 1.99037 ®

Comparison of the exact iolution of Eq. (27) for

Eq. (42)

—_— ot et mmd md ed ek wwd b

)
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.31784
.36866
.42002
.47179
.52382
.57596
.62803
.67990
.73139
.18238
.83273
.88237
.93126
.97944
.02704
.07434
12181
.17022
.22079
.27552
.3381




.00
.95
.90
.85
.80
.15
.10
.65
.60
.55
.50
.45
.40
.35
.30
.25
.20
a5
.10
.05
.00
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Table 2.

.33811
.45472
.56867
.68156
. 18946
.89295
.99201
.08688
217792
.26554
.35012
.43199
.51143
.58870
.66402
.13761
.80968
.88048
.95025
.01330
.08795

(27)

. (35)

.82734
.86793
.91018
.95431
.00058
.04932
.10094
.15599
.21517
.27944
.35012
.42908
L5191
.62448
.15214
.91428
.13424
.48324
.03981
.41385

Eq.
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Counterpart of Table 1 for mode 2.

.33811
.45471
.56935
.67978
. 18346
.87767
.95963
.02668
.076486
.10712
.11748
10712
.07646
.02668
.95963
.871761
. 18346
.67978
.56935
.45471
.33811

(37)
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. (42)

.00431
.06841
.13205
.19507
L2573
.31861
.37880
L4371
.49517
.55102
.60511
.65732
.10799
.75592
.80239
.84729
.89111
.93473
.97967
.02870
.08795




Table 3.

Mode
Number

LW =

Roots of Eq. (27) and relationship to the non-integral

Modified
n
.93643
2.01734
2.98458
4.00790

mode number of Eq. (49).

Upper Duct
X Eq. (49)
1.509857 .976059

3.189256 1.961474
4,542342 2.984444
5.713857 4.004702

Lower Duct
X Eq. (49)
1.234323 .943822
2.775082 1.996165
3.917366 3.009325
4.879389 3.988301




Table 4. Lower order roots of EQqs. (65) and (68).

Root

Number Eq. (65) Eq. (68)
] 0 0.4899060
2 1.7647488 1.5621030
3 2.8082340 2.3381074
4 3.6816163 2.9624100
5 4.4606953 3.54391 N
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Table 5.

Simplifications arising from various

conditions between the parameters of Fig. 11.

Case

O Ww © ~N O W s W N -~

4 —d e
N -

Condition
General
Y37 T30
Y27 ™0
T3
€ = N
2 +5
I +5
4 +5
2 +3
2 + 4
3+ 4
2+3 +4+5

4

variables
x' y' HI Po P]
x' ’ i

Y, W P]
X, ¥, W, p
x’ yl N' Pl P.l
x' H' ’

P P]

x’ 1]

w p]
X, W, p
X, W, o
X, ¥, w
X

. y' w' p]
x! y' H' P
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FIG.Y. Schematic of the unbounded refractive duct.

F16.2. The eigenvalue, x, as a function of o for the first four

modes .

FIG.3. The circles represent normal mode phase velocities for single
unbounded ducts. The curves are the ray-theory phase-integral results.

FIG.4. Counterpart of the curves of Fig. 3 for non-integral values of

mode number

FIG.5. Comparison of the modified phase integral results for single
ducts with the normal mode result for a double duct.

F1G.6. Schematic of the bounded refractive aduct.
FIG.7. The first five roots of Eq. (55) for p=1.
FI16.8. The curve segments (of Fig. 7), which lie to the right of the
siant line, r.present real frequencies Those to the right represent

pure imaginary frequencies.

FIG.9. The extension of the first root of Fig. 7 to negative values of

X.

FIG. 10. The first four rocts of £q (55) for y=0.

FIG. M1 Schematic of a double duct profile

1500 S5cnematycs of bounaed ducts for test ng the ray theor-es of

kef< 5 and 6.
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F1G.3. The circles represent normal mode phase velocities for single

unbounded ducts.

The curves are the "ay-theory phase

50

~integral resylts.
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FIG.4. Counterpart of the curves of Fig. 3 for non-integral values of

mode number.
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FIG.5. Comparison of the modified phase integral results for single

ducts with the normal mode result for a double duct.

52




"39Np 3A|1IB4)3J Papunog ayl 4O I}IBWAYIS ‘9914

g33dS ANNOS

-
-~
L 3

-

->

-
L 3
4

H1d3Q




L - - e

6.0

9

I TR

I R A L

. 7| 80y

Ve ~
e
Tll — vl e— — ] — — ent—
- =
.

- NN.Q‘ .

———

“|1ree

9.0

0.00
7.0

(55) for p=1.

5.0

3.0
54

_Pl T l\n_|l TR

5.0
4.0-

2.0
1.0

\\
1

1.0
The first five roots of Eq.

-1.0
F16.7.

0.0
-3.0



5.0

pure imaginary frequencies.

. 4.0
3.54
a.0 2.86
x .
2.34
2.0
T
1.56
\
A\
1.0 "_\
0.49
0.0
-3.0 7.0 8.0

FIG.8. The curve segments (of Fig. 7), which 1ie to the right of the
slant line, represent real frequencies.
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